

HTHNC Internship Project Goals

- Conduct a four-week, full-time internship in a field of interest.
- Create a project that benefits the organization.
- \diamond Learn about the workplace and careers.

Project Focus Areas

- ♦ Neurobiology
- ♦ Computer Programming
- Image Segmentation Project

Objective: Create a Three-Dimensional Mitochondria Model from a Stack of SEM Images

model.

The Data Set

- 299 Images, 1.5 microns by 0.7 microns
 - Area of 1 iPhone pixel, 2.7 Million per Screen
- 200 Nanometer z Resolution
 - Too Coarse
- Need 2 nm xyz Resolution for 3D solid model
 - Created with Tomogram Images
- \diamond Note: Stack \rightarrow Series \rightarrow Object \rightarrow Section \rightarrow Traces

Virtual Slices Made with Computerised Tomography

Physical slices of a rat brain are cut 200 nanometers thick.

\~~/

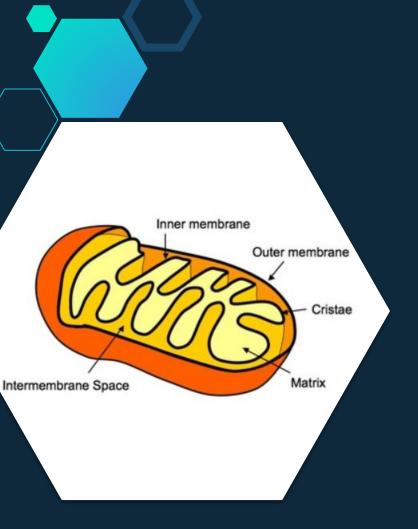
CT Scans create 2nanometer thick virtual slices

Images are optimized with a Python program.

Trouble with Tomograms

- ♦ Transparency of Virtual Slices
 - A New Type of "Grey Wall" (Kirk, 2018)
- \diamond Thickness Disparity \rightarrow Gaps in the Data Set

Where does the data come from?


Rat Brain

Cerebellum

Granule Cell attaching to Purkinje Cells

> Parallel Fiber Axon

Mitochondria

Mitochondria

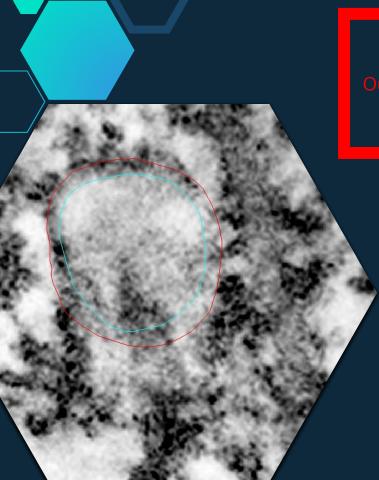
 \diamond

 \diamond Create ATP, providing energy for the cell.

- Matrix → Pyruvate Oxidation and Krebs Cycle
- Inner Membrane → Electron Transport
- $C_6H_{12}O_6 + 6O2 \rightarrow 6CO_2 + 6H_2O + 38 \text{ ATP}$

Instigate apoptosis, the "pruning" of cells.

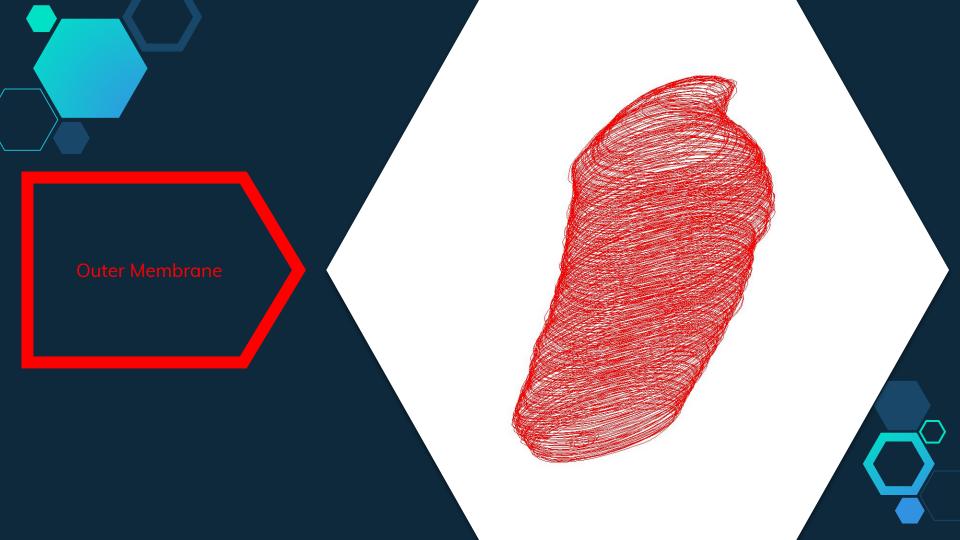
- Shut Down Cellular Respiration & Activate Cysteine Proteases
- Dysfunctional → Lipofuscin Granules (Moreira et al., 2010)

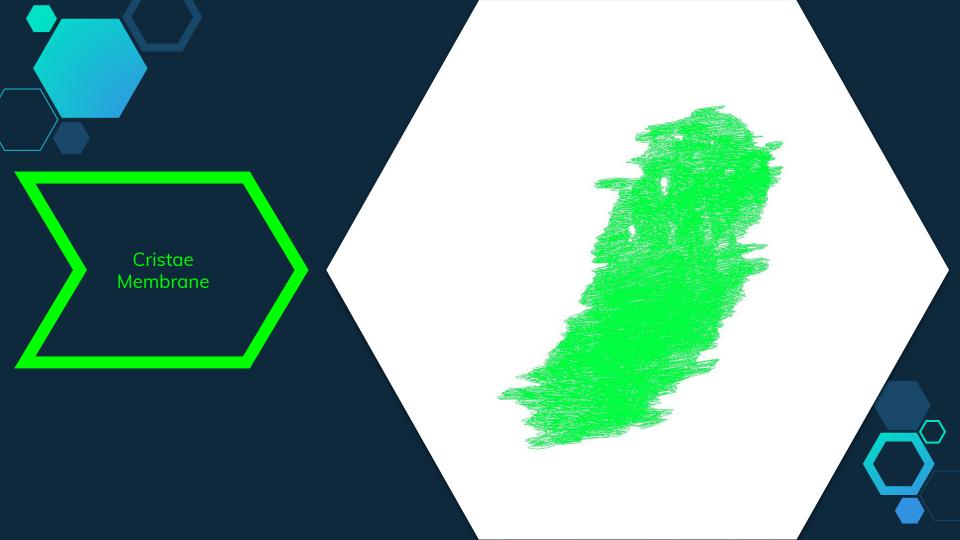

Create body heat as a "waste product" of energy production.

 50°C or 122°F, About 30% Higher than Body Temperature (Chretien, 2017)

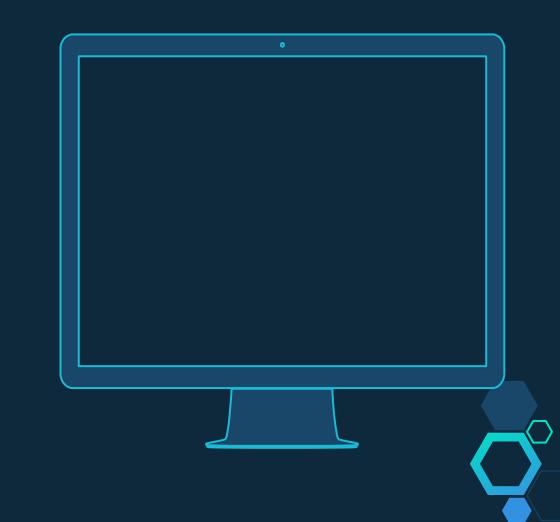
Reconstruct

- A Program Specially Designed by Prof. Kristen Harris for Image Segmentation
- Allows for traces to be compiled into a 3D model.
- Used to create "Objects" out of each membrane.




Tracing Protocol

- \diamond Compare with known traces.
- View each section in the context of surrounding sections.
- Start in the center and work towards the ends.



\rightarrow Surfacing \rightarrow

Blender / M-Cell

- Designed by Tom for Cell Modeling
- Subtracts Cristae from Inner Membrane to form Invaginations
- Translates the Traces into a Smooth Surface Model

Cristae Membrane

The Diffusion Equation

- Describes Density of a Diffusing Material over Time
- Cristae Channels Maximaize Surface Area to Catalyse Reactions

The Heat Equation

- Describes Heat Distribution over Time
- Maximum Surface Area Leads to Maximum Heat Distribution from Mitochondria Outwards

$$\frac{\partial \phi({\bf r},t)}{\partial t} = D \nabla^2 \phi({\bf r},t), \label{eq:phi}$$

Filling in the Blanks – Interpolation

- ♦ Interpolation → Estimates for the Space between Known Information
 - Skipped Areas in the Stack

 \diamond

- ◇ Put in Blender to Determine Space of Gaps → Traces Estimated in Reconstruct
- Must Still Be Done on the New Model

"What is the impact of mitochondrial morphology on function?"

University of Luxembourg, Guadalupe Garcia

- \diamond Structure \rightarrow Level of ATP Production
- ♦ ATP/ADP Translocator
 - A Protein within the Inner Membrane
 - Exchange of High-Energy ATP Inside with Low-Energy ADP Outside

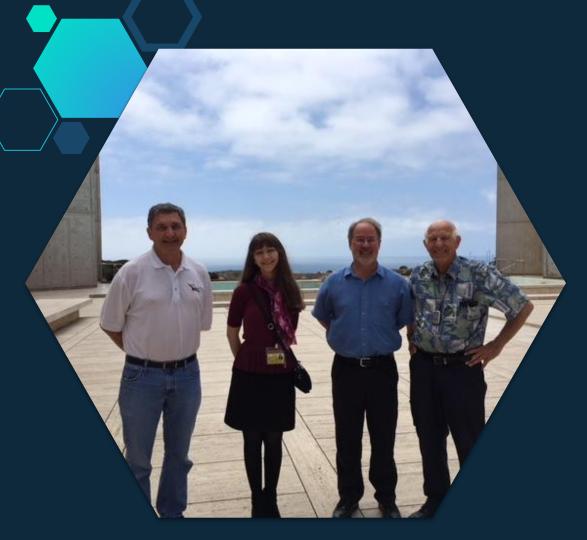
Our Questions

- What is the "spillage" from open cristae membrane?
- What are the small circles between membranes?
- Is the missing data a result of the knife tearing material away, or the tomogram algorithm not going up far enough?
- Does the structure of the mitochondrion change with age or neurodegenerative disease?

Benefits of Staring at a Mitochondrion

- Better Understanding the "Powerhouse of the Cell"
- Strengthening Visual Perception
- Learning to Do Image Segmentation with Reconstruct
- Contributing to Ongoing Research

Most importantly, it's a great excuse to spend time at the Salk!



Thank you!

Terry Cailey \Diamond Brad Sophie \Diamond \diamond \diamond Ramona Iris \diamond \diamond Dona \diamondsuit Roger And Everyone! \diamond

Don, Tom, and Bob -Thank you for making it all happen!

5

•

It's been a pleasure working with you!

Citations

Harris, J., Jolivet, R. and Attwell, D. (2018). Synaptic Energy Use and Supply. [online] Cell. Available at: <u>https://www.cell.com/neuron/fulltext/S0896-6273(12)00756-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fr</u> <u>etrieve%2Fpii%2FS0896627312007568%3Fshowall%3Dtrue</u>.

Lennie, P. (2003). The Cost of Cortical Computation. [online] Available at: <u>https://ac.els-cdn.com/S0960982203001350/1-s2.0-S0960982203001350-main.pdf?_tid=417b2f38-afe0-4d4d-a313-0b3</u> <u>d312c54c1&acdnat=1525663677_c08dcdda87a3a9bb8119e205a0e09ada</u>.

Vakifahmetoglu-Norberg, H., Ouchida, A. and Norberg, E. (2017). The Role of Mitochondria in Metabolism and Cell Death. [online] Available at: <u>https://www.sciencedirect.com/science/article/pii/S0006291X16319519?via%3Dihub]</u>.

DL, V. (2011). Apoptogenic factors released from mitochondria. - PubMed - NCBI. [online] Ncbi.nlm.nih.gov. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20713095.

Lee, J. (2012). Neuronal Autophagy: A Housekeeper or a Fighter in Neuronal Cell Survival?. [online] Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294068/ [Accessed 7 May 2018].

Moreira, P., Carvalho, C., Zhu, X., Smith, M. and Perry, G. (2010). Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. [online] Available at: <u>https://doi.org/10.1016/j.bbadis.2009.10.006</u> [Accessed 7 May 2018].

Yin, S. (2016). Why Do We Inherit Mitochondrial DNA Only From Our Mothers?. [online] Nytimes.com. Available at: https://www.nytimes.com/2016/06/24/science/mitochondrial-dna-mothers.html [Accessed 7 May 2018].

Jr, K. (2002). What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. - PubMed - NCBI. [online] Ncbi.nlm.nih.gov. Available at: <u>https://www.ncbi.nlm.nih.gov/pubmed/14764321</u> [Accessed 7 May 2018].

